organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

D. Gayathri,^a D. Velmurugan,^a* K. Ravikumar,^b K. Karthikeyan^c and P. T. Perumal^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.051 wR factor = 0.144 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-[3-(4-Ethoxyphenyl)-1-phenyl-1*H*-pyrazol-4-yl]-4-nitro-2,5-diphenylisoxazolidine

The isoxazolidine ring in the title compound, $C_{32}H_{28}N_4O_4$, adopts an envelope conformation.

Received 27 March 2007 Accepted 28 March 2007

Comment

Isoxazolidines are interesting intermediates for the synthesis of several classes of natural products and biologically active compounds such as β -amino acids and alkaloids (Gothelf & Jorgensen, 1998). Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anti-hyperglycemic, analgesic, anti-inflammatory, antipyretic, antibacterial, hypoglycemic, sedative-hypnotic and anticoagulant activities. In particular, arylpyrazoles are widely used in medicinal and pesticidal chemistry. Recently, some arylpyrazoles were reported to display non-nucleoside HIV-1 reverse transcriptase inhibitory activity (Lee *et al.*, 2003).

Bond lengths and angles in the title compound, (I), are comparable with literature values (Allen *et al.*, 1987). The sum of the bond angles around N3 [332.1°] indicates sp^3 hybridisation. The pyrazole ring forms dihedral angles of 20.7 (1)° with the phenyl ring attached at N1 and 51.4 (1)° with the 4-ethoxyphenyl ring at C13. The isoxazolidine ring adopts a twisted conformation with a pseudo-twofold axis passing through atom C19 and bond O4–N3.

© 2007 International Union of Crystallography All rights reserved

Experimental

A solution of pyrazolyl nitrone (0.5 mmol) and β -nitrostyrene (0.5 mmol) was refluxed in dry toluene (10 ml). The completion of the reaction was monitored by thin-layer chromatography. The solvent was evaporated under reduced pressure to give the crude product, which was further purified by column chromatography using petro-leum ether–ethyl acetate (96:4) as eluent, to afford the pure product (68%) as a pale-yellow solid. Single crystals were obtained by crystallization from chloroform.

Crystal data

$C_{32}H_{28}N_4O_4$
$M_r = 532.58$
Monoclinic, $P2_1/n$
a = 13.2463 (7) Å
b = 10.0112 (6) Å
c = 20.9518 (12) Å
$\beta = 101.688 \ (1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 30188 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.144$ S = 1.036286 reflections 362 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$

6286 independent reflections

4903 reflections with $I > 2\sigma(I)$

V = 2720.8 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.27 \times 0.24 \times 0.23 \text{ mm}$

T = 273 (2) K

 $R_{\rm int} = 0.024$

Z = 4

All H atoms were refined using a riding model, with C–H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C–H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, C–H = 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, C–H = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ atoms and N–H = 0.86 Å, $U_{iso}(H) = 1.2U_{eq}(N)$ for the NH group.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

PLATON (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

DG thanks the CSIR, India, for the award of a Senior Research Fellowship. DV thanks DST, India, for a major research project. The Department of Science & Technology (DST-FIST) and the University Grants Commission (UGC), Government of India, are acknowledged by DV for providing facilities to the department.

References

Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2001). SMART (Version. 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.

Gothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863-910.

Lee, K. Y., Kim, J. M. & Kim, J. N. (2003). *Tetrahedron Lett.* 44, 6737–6740. Nardelli, M. (1995). *J. Appl. Cryst.* 28, 659.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.